US Patent # 8,220,347 B2, US 9,291,531 B2 | Call Us Today! 1-614-504-6915

Announcements


http://seminario.ekosbrasil.org/en/
10h00 – 12h00 SESSION 1: Solutions – Craig Cox (Cox-Colvin & Associates, Inc.) – will be presenting – Evaluation and Remediation of a Large Comingled Dilute Chlorinated VOC Plume in Sand and Gravel Aquifer – a Case Study
... See MoreSee Less

October 15-18, 2018: 34th Annual International Conference on Soils, Sediment in Amherst, Massachusetts at Booth B16. October 18, 2018 - Session 19: 9:30 a.m - Craig A. Cox will present Successful Closure of a DNAPL Site – Lessons Learned ... See MoreSee Less

#stopradon AARST international Radon and Trade Show 2018 ... See MoreSee Less

Available now - Mini Vapor Pin. Please make sure to read the SOP or the Mini Vapor Pin as it is a different installation that the original version. The Mini Vapor Pin comes as a set. SET INCLUDES: Mini Vapor Pin®, FLX-VPTM Barb with O-ring, Silicone Sleeve, and Mini Vapor Pin® Secure Cover with O-ring.
Order yours today!
https://www.vaporpin.com/product/mini-vapor-pin/

https://www.vaporpin.com/wp-content/uploads/2018/07/Mini-Pin-SOP-7-13-2018-Web.pdf
... See MoreSee Less

Did you know that the Vapor Pin is a tool for..
1 - Locating VOC sources below hard surfaces
2 - Collecting high-resolution data sets
3 - Differential Pressure Testing
4 - Radon Mitigation Testing
5 - Stray Gas Evaluations
6 - Sub-Slab Soil Gas Sampling
7 - Long Term Monitoring
8 - Continuous Monitoring
9 - Vapor Intrusion Assessments
10 - Methane Sampling on Landfills
etc, etc., etc.,
Contact us for more information
... See MoreSee Less

METHODS AND TECHNIQUES IN THE INVESTIGATION AND REMEDIATION OF CONTAMINATED AREAS. 3rd workshop successful. Thank you to all those who attended. #sitecharacterization #vaporpin #vaporpindobrasil ... See MoreSee Less

All set up and ready for the GOwen Environmental - Contaminated Site Management Outdoor Demonstration. ... See MoreSee Less

Happy Memorial Day Weekend! Thank you to those who served and who are serving. ... See MoreSee Less

Radon in Schools: Despite state and federal recommendations, only 53 of 331 school districts in Minnesota report they have tested classrooms for radon since 2012. KARE 11 found out which Twin Cities area districts are testing – and which ones are not.

Hollywood recognizes Radon: Shantel VanSanten has turned a personal tragedy into a catalyst for helping others. After her grandmother passed, VanSanten and her family looked for answers, and were shocked at what they found. “We searched to understand what the cause was, and we found it was from radon poisoning, which was found in [her] basement.”
... See MoreSee Less

Are you attending @TCEQEVENTS? Stop by and see whats new at Booth 525 ... See MoreSee Less

Main Content

Source Characterization


Using Vapor Pins® for Source Characterization
The Vapor Pin® is ideally suited for locating Volatile Organic Compound (VOC) contamination sources beneath pavement. Our experience is that most sites have sources of contamination that in addition to those associated with underground tanks and degreasing areas. Unsuspected source areas often correspond to former exterior doors that were obscured by later building expansion. Cox-Colvin has located such sources equipped with little more than some Vapor Pins®, a hammer drill, and a multi-gas meter.

Cox-Colvin’s approach to VOC source investigation consists of installing Vapor Pins® along a grid, allowing the points to equilibrate, and collecting readings with a multi-gas meter. With a team of two people, we’ve installed as many as 90 Vapor Pins® in one day, and sampled, removed the Vapor Pins®, and plugged the holes on the following day.

For source characterization, we normally install brass Vapor Pins® in the stick-up configuration on a grid spacing of 20 to 30 feet. We cover the Vapor Pins® with traffic cones and allow them to equilibrate for at least an hour. We then collect field readings with a hand-held multi-gas meter capable of measuring VOCs via Photo-Ionization Detector (PID), oxygen (O2), and Lower Explosive Limits (LEL). The PID indicates VOC sources. O2 in soil gas is normally lower than in air, but unusually low levels (<5%), especially with high LEL readings, are characteristic of methane generation (methanogenesis).
Methanogenesis occurs when non-chlorinated solvents or other organic matter degrades at too high a rate for O2 replenishment.

After collecting field readings at all of the sample points, samples are collected from locations with elevated PID readings, and submitted to a laboratory for confirmation. Samples can be collected into evacuated glass vials, Bottle Vacs, Tedlar bags, Summa canisters, sorbent tubes, and potentially other devices. Some containers do not offer low enough reporting levels for vapor intrusion sampling, but low levels are probably not needed for locating contaminant sources.At the conclusion of sampling, remove the Vapor Pins® and fill the holes with hydraulic cement or caulk.

Urethane and polyurethane caulks are recommended by radon mitigation guidance for filling holes and cracks, but they contain VOCs that could interfere with subsequent sampling. Hydraulic cement does not contain VOCs, but it sets up quickly, making it potentially difficult to fill borings to total depth.  After removing the silicone sleeve and other plastic parts from the Vapor Pins®, decontaminated them for reuse. Cox-Colvin has a number of Vapor Pins® that they have used an average of seven or eight times with no breakage or damage.

DOWNLOAD PDF